KIT BYPASS ELECTRONIQUE COR15077

INTRODUCTION À LA JAUGE NUMÉRIQUE

Les kits bypass numériques WK-6889 DSZH® utilisent des puces informatiques intelligentes, des capteurs de température et de pression extrêmement précis. Un écran LCD haute résolution peut afficher la température effective, le sous-refroidissement, la surchauffe, le vide. Ils sont programmés avec 88 données de pression de réfrigérant et de température saturée prélevées dans la toute dernière base de données NIST qui peut mesurer le sous-refroidissement et la surchauffe de manière précise et vous aider à analyser la quantité d'utilisation des réfrigérants.

MERCI D'UTILISER NOS PRODUITS!

Caractéristiques

- Passage entre pression de réfrigérant et vide
- Programmé avec 88 données de température saturée et de pression de réfrigérant prélevées dans la toute dernière base de données NIST
- Mesure du vide indiquée en pourcentage
- Indicateur de batterie faible. Longue durée de vie de batterie de 30 heures
- Affiche la température effective, le sous-refroidissement, la surchauffe, le vide
- Écran LCD haute résolution avec rétro-éclairage
- Conception 6V DC basse tension
- Collecteur en alliage d'aluminium à 2 voies avec conception à diaphragme
- Capteurs : 2 capteurs de pression et 2 capteurs de température.

SPÉCIFICATION

1. Unités de pression : KPA, INHg, KgF/cm², PSI, bars

2. Unités de vide : Torr, mmHg, Micron, %

4. Puissance : 1,5 V AA x 4 = 6 V

5. Mesure de pression : pression effective

6. Unités de température °F, °C

7. Gamme de mesure : Vide : -101 Kpa – 0 Kpa

Pression d'épreuve : 0 Mpa - 6 MPa

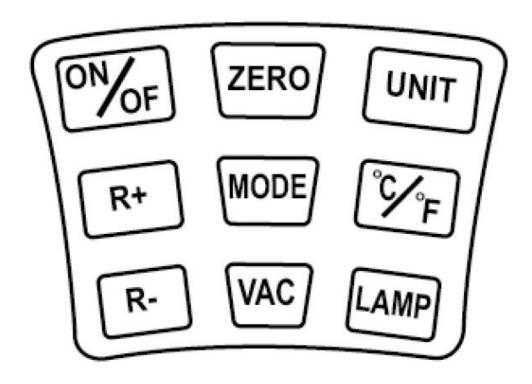
Pression de réfrigérant : 0 MPa - 4 MPa

8. Résolution de capteur : 1 KPa9. Précision de capteur : ± 0,5%

10. Limite de surcharge : 100 bars, 10 MPa

11. Température de fonctionnement : -20°C - +60°C

12. Durée de vie de la batterie : 30 heures


13. Gamme de température de capteur : -50°C – 150°C (-58°F – 302°F)

14. Précision de température : < 50°C (+/- 0,1°C), > 50-100°C (+/- 0,2°C)

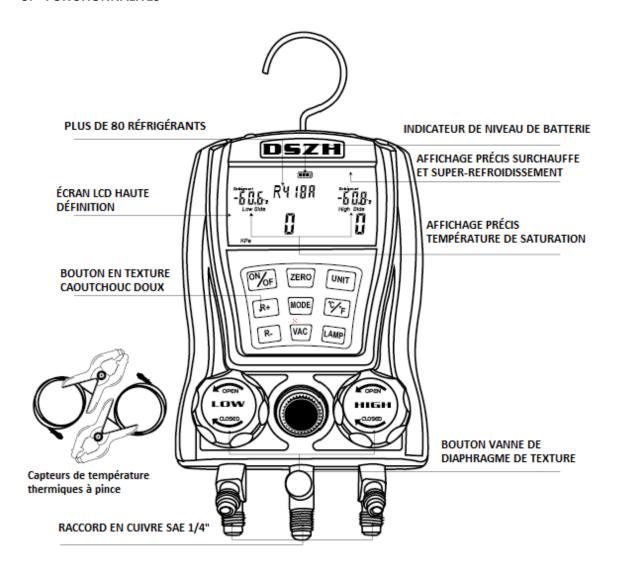
> 100°C (+/- 1°C)

15. Extinction automatique : 15 min avec capacité de désactivation

1. INSTRUCTIONS DE FONCTIONNEMENT

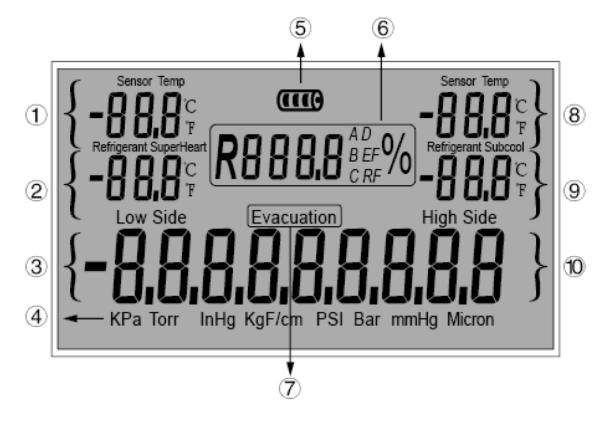
1. FONCTIONS DU CLAVIER

Article	Clavier	Fonction
1		Allume ou coupe le bypass
2		Mise à zéro (à utiliser après l'allumage du bypass)
3		Sélectionne les unités de pression
4		Sélectionne le réfrigérant (défilement vers le haut)
5		Commutateur de mode de température saturée/effective et mode de sous-
		refroidissement/surchauffe
6		Sélectionne les unités de température
7		Sélectionne le réfrigérant (défilement vers le bas)
8		Mode sous vide
9		Allumage/extinction du rétro-éclairage LCD


ATTENTION: ZERO: appuyer sur cette touche et la maintenir enfoncée pendant 3 secondes pour mettre à zéro l'affichage uniquement lorsque le bypass est allumé et que l'affichage n'est PAS à zéro. (NE PAS appuyer sur cette touche quand le bypass est prêt à fonctionner).

2. INSTRUCTIONS DE FONCTIONNEMENT

- 1. Allumer/couper le collecteur : appuyer sur la touche
- 2. Mettre à zéro le relevé : appuyer sur la touche Dour mettre à zéro le relevé de pression.
- 3. Sélectionner les unités : appuyer sur la touche pour sélectionner les unités de pression. Appuyer sur la touche pour changer d'unités de température.

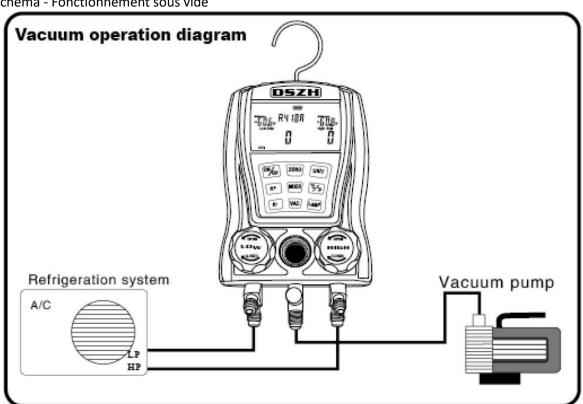

- 4. Sélectionner le réfrigérant ; appuyer sur R+ / R- pour sélectionner le réfrigérant. Pour une sélection rapide, appuyer sur la touche et la maintenir enfoncée.
- 5. Rétroéclairage : appuyer sur la touche pour allumer/éteindre l'éclairage.
- 6. Mesure sous vide : appuyer sur la touche vac pour entrer en mode sous vide.
- 7. Mesure de la température : lorsque les capteurs de température sont branchés, un affichage de la température effective apparaîtra sur l'écran LCD. Si les capteurs sont débranchés, l'affichage n'apparaîtra plus.
- 8. Lors de la mesure de la température (capteurs de température branchés), appuyer sur la touche pour sélectionner l'affichage de la température de réfrigérant ou le sous-refroidissement ou la surchauffe.

3. FONCTIONNALITES

HAUTE PRÉCISION - SUPER RÉSISTANT AUX CHOCS

4. ÉCRAN LCD

Instructions d'affichage de l'écran LCD


Réf.	Fonction
1	Température effective basse pression
2	Température saturée ou surchauffe
3	Température saturée (basse pression)
4	Unités sélectionnées
5	Indication de batterie
6	Réfrigérant et pourcentage de vide
7	Indication de vide
8	Température effective haute pression
9	Température saturée ou sous-refroidissement
10	Température saturée (haute pression)

OPÉRATION DE MISE SOUS VIDE ET DE CHARGEMENT:

1. FONCTIONNEMENT SOUS VIDE DANS LE SYSTÈME DE RÉFRIGÉRATION

- 1. Appuyer sur la touche ON/OFF pour allumer ou éteindre le collecteur, si nécessaire appuyer sur la touche LAMP pour allumer le rétro-éclairage.
- 2. Appuyer sur la touche VAC pour entrer en mode sous vide
- 3. Brancher le système de climatisation, le collecteur numérique et la pompe à vide comme indiqué ci-dessous.
- 4. Appuyer sur la touche ZERO pour mettre à zéro le relevé sur l'écran.
- 5. Allumer la pompe à vide et démarrer le fonctionnement sous vide. NOTE : selon le résultat du test du cylindre 13L, après 3-5 min de fonctionnement sous vide, le message « URL97% » ou « URL98% » apparaîtra à l'écran. Un pourcentage supérieur signifie un vide supérieur.
- 6. Contrôler les fuites de la pression du système. Si l'affichage sur le collecteur reste immobile, cela signifie qu'il n'y a pas de fuite dans le système. NOTE : si le relevé de pression du système augmente, cela signifie qu'il y a des fuites dans le système ou au niveau des raccordements, vous devez trouver les points de fuite et réparer le système.
- 7. Lorsque le fonctionnement sous vide est terminé, fermer les vannes sur le collecteur en premier, puis fermer la pompe à vide. Enfin, appuyer sur la touche ON/OFF pour couper le collecteur

Schéma - Fonctionnement sous vide

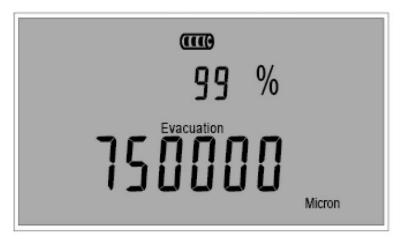
Système de réfrigération

Pompe à vide

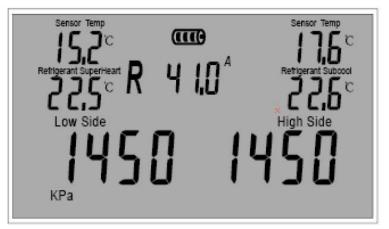
2. Opération de charge de réfrigérant après un fonctionnement sous vide

- 1. Comme indiqué ci-dessous, brancher le cylindre, le système de climatisation et le collecteur.
- 2. Appuyer sur la touche ON/OFF, pour allumer le collecteur. Appuyer sur la touche LAMP et la maintenir enfoncée pour allumer le rétroéclairage.
- 3. Appuyer sur la touche « R+ » ou « R- » pour choisir un réfrigérant qui sera chargé. Assurezvous de choisir le même réfrigérant sur les jauges latérales inférieure et supérieure. NOTE : appuyer sur la touche « R+ » ou « R- » et les maintenir enfoncées pour une sélection rapide.
- 4. Appuyer sur les touches UNIT et °C/°F pour sélectionner l'unité de pression et de température.
- 5. Appuyer sur la touche « ZERO » pour mettre à zéro le relevé.
- 6. Ouvrir la vanne sur la gauche du collecteur (BLEUE), ouvrir la vanne sur le cylindre, puis allumer le système de réfrigération.
- 7. Une fois l'opération de charge de réfrigérant terminée, fermer la vanne sur le cylindre.
- 8. Ouvrir la vanne sur la droite du collecteur (ROUGE), tester la pression du système.
- 9. Si le système de réfrigération fonctionne normalement, fermer les deux vannes sur le collecteur (ROUGE ET BLEUE) puis couper le système de réfrigération. Appuyer sur la touche ON/OFF pour couper le collecteur. L'opération de charge de réfrigérant est terminée.

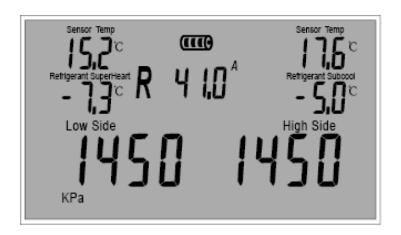
Schéma - Charge du réfrigérant



Système de réfrigération

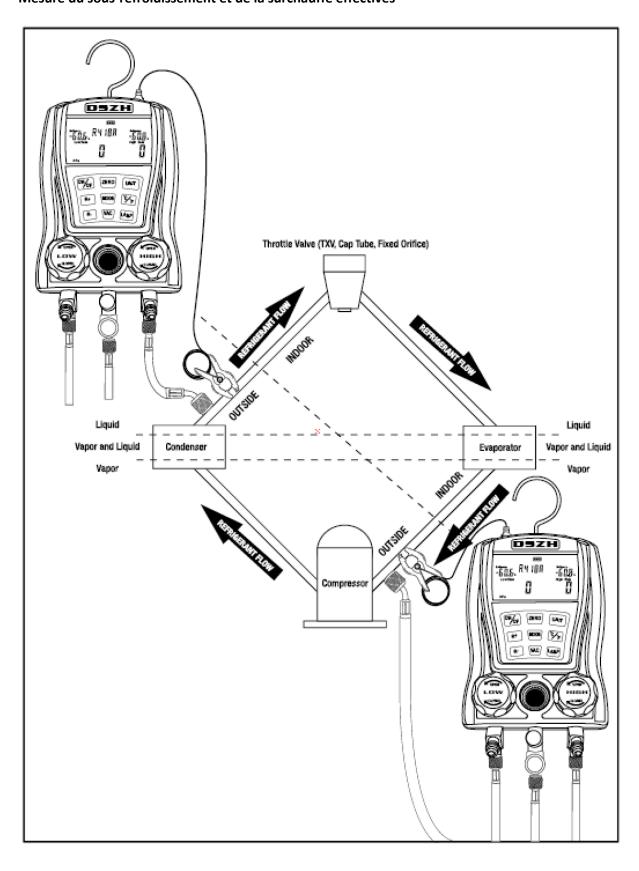

Cylindre et balance de charge

5. ÉCRAN LCD


1. Écran LCD de mesure de vide

2. Écran LCD de mesure de pression

3. Écran LCD de mesure de pression (sous-refroidissement & surchauffe)



Codes des réfrigérants

Liq : liquide Vap : vapeur

Unité	Réfrigérant	Réfrigérant	Unité	Réfrigérant	Réfrigérant		
1	R11	R11	45	R409A-LIQ	R409A-VAP		
2	R113	R113	46	R409B-LIQ	R409B-VAP		
3	R114	R114	47	R41	R41		
4	R115	R115	48	R410A-LIQ	R410A-VAP		
5	R116	R116	49	R410B-LIQ	R410B-VAP		
6	R12	R12	50	R411A-LIQ	R411A-VAP		
7	R123	R123	51	R411B-LIQ	R411B-VAP		
8	R124	R124	52	R412A-LIQ	R412A-VAP		
9	R125	R125	53	R413A-LIQ	R413A-VAP		
10	R1270	R1270	54	R414A-LIQ	R414A-VAP		
11	R13	R13	55	R414B-LIQ	R414B-VAP		
12	R134A	R134A	56	R415A-LIQ	R415A-VAP		
13	R14	R14	57	R415B-LIQ	R415B-VAP		
14	R141B	R141B	58	R416A-LIQ	R416A-VAP		
15	R142B	R142B	59	R417A-LIQ	R417A-VAP		
16	R143A	R143A	60	R418A-LIQ	R418A-VAP		
17	R152A	R152A	61	R419A-LIQ	R419A-VAP		
18	R170	R170	62	R420A-LIQ	R420A-VAP		
19	R21	R21	63	R421A-LIQ	R421A-VAP		
20	R218	R218	64	R421B-LIQ	R421B-VAP		
21	R22	R22	. 65	R422A-LIQ	R422A-VAP		
22	R227EA	R227EA	66	R422B-LIQ	R422B-VAP		
23	R23	R23	67	R422C-LIQ	R422C-VAP		
24	R236EA	R236EA	68	R422D-LIQ	R422D-VAP		
25	R245CA	R245CA	69	R423A-LIQ	R423A-VAP		
26	R245FA	R245FA	70	R424A-LIQ	R424A-VAP		
27	R290	R290	71	R425A-LIQ	R425A-VAP		
28	R32	R32	72	R426A-LIQ	R426A-VAP		
29	R401A-LIQ	R401A-VAP	73	R427A-LIQ	R427A-VAP		
30	R401B-LIQ	R401B-VAP	74	R428A-LIQ	R428A-VAP		
31	R401C-LIQ	R401C-VAP	75	R50	R50		
32	R402A-LIQ	R402A-VAP	76	R500-LIQ	R500-VAP		
33	R402B-LIQ	R402B-VAP	77	R501-LIQ	R501-VAP		
34	R403A-LIQ	R403A-VAP	78	R502-LIQ	R502-VAP		
35	R403B-LIQ	R403B-VAP	79	R503-LIQ	R503-VAP		
36	R404A-LIQ	R404A-VAP	80	R504-LIQ	R504-VAP		
37	R405A-LIQ	R405A-VAP	81	R507A-LIQ	R507A-VAP		
38	R406A-LIQ	R406A-VAP	82	R508A-LIQ	R508A-VAP		
39	R407A-LIQ	R407A-VAP	83	R508B-LIQ	R508B-VAP		
40	R407B-LIQ	R407B-VAP	84	R509A-LIQ	R509A-VAP		
41	R407C-LIQ	R407C-VAP	85	R600	R600		
42	R407D-LIQ	R407D-VAP	86	R600A	R600A		
43	R407E-LIQ	R407E-VAP	87	R717	R717		
44	R408A-LIQ	R408A-VAP	88	R744	R744		

Mesure du sous-refroidissement et de la surchauffe effectives

La surchauffe est la différence entre la température effective (température du capteur) du réfrigérant (gaz) quand il quitte l'évaporateur et la température du point d'ébullition du réfrigérant dans la bobine d'évaporateur (température saturée). Après l'ébullition, le réfrigérant continue de se réchauffer. Le nombre de degrés qui se « réchauffent » après l'ébullition représentent la surchauffe. Dans les pires conditions (faible charge pour des systèmes à orifice fixe), le réfrigérant dans l'évaporateur bout près de l'extrémité de la bobine d'évaporateur. Afin de s'assurer que le liquide n'entre pas dans le compresseur dans le pire des cas, les fabricants de climatiseurs publient des tableaux. Les tableaux montrent ce que devrait être la surchauffe lors d'une mesure de température humide interne et d'une température d'air extérieur données. La mesure de la surchauffe est votre meilleure indication, sur un système à orifice fixe, de la charge de réfrigérant correcte et des conditions de fonctionnement. Si tout le reste fonctionne correctement et que la surchauffe effective est trop élevée, ajouter du réfrigérant. Si elle est trop basse, enlever du réfrigérant

Le sous-refroidissement est la différence entre le point d'ébullition du réfrigérant dans le condenseur (température saturée) et la température effective (température du capteur) du réfrigérant quand il quitte le condenseur. Le nombre de degrés que « perd » le réfrigérant en deçà du point de consigne représente le sous-refroidissement. Dans le scénario du pire des cas, une faible charge pour des systèmes de vanne à dilatation thermostatique (TXV), le sous-refroidissement continuera d'augmenter. Si le sous-refroidissement augmente trop, le liquide peut refluer dans le compresseur provoquant des dommages et une panne.

Sur les systèmes TXV, le sous-refroidissement est la meilleure indication de l'état de la charge dans le système de réfrigérant puisque ces systèmes sont conçus pour maintenir une surchauffe constante. Une charge correcte du système assure une efficacité maximale et une durée de vie de l'équipement plus longue.

Faites attention si vous travaillez avec de l'électricité et des liquides ou gaz sous haute pression. Portez toujours des lunettes de sécurité.

SURCHAUFFE ET SOUS-REFROIDISSEMENT CIBLÉS

Il convient de suivre toutes les spécifications, les avertissements et les suggestions des fabricants d'équipement. Afin de déterminer la surchauffe (système à orifice fixe) ou le sous-refroidissement cibles (les tableaux varient considérablement d'un système à un autre), vous aurez généralement besoin de trois choses. Un thermomètre sec d'extérieur (température d'air extérieur), un thermomètre humide d'intérieur, et les tableaux de surchauffe ou de sous-refroidissement cibles des fabricants.

GRAPHIQUES GÉNÉRIQUES CIBLES DE SURCHAUFFE ET DE SOUS-REFROIDISSEMENT*

*Le graphique de surchauffe requis est un exemple de graphique de surchauffe générique d'un système résidentiel réparti, à orifice fixe typique. Le graphique de sous-refroidissement requis est un exemple d'un graphique typique pour un système résidentiel réparti, TXV. Ces graphiques ne doivent pas être utilisés pour la charge. Vous ne trouverez que des exemples pour montrer ce à quoi ressemblent les graphiques du fabricant. Suivez toutes les indications, instructions et avertissements du fabricant qui vont au-delà des instructions du présent manuel.

SOUS-REFROIDISSEMENT REQUIS TEMPÉRATURE HUMIDE

		57	59	61	63	65	67	69	71	73
CHE	75	25	24	23	22	21	20	19	18	17
낊	80	24	23	22	21	20	19	18	17	15
S	85	23	22	21	20	19	18	16	15	14
띪	90	22	21	20	19	18	16	15	14	12
2	95	21	20	19	18	17	15	13	12	10
R	100	20	19	18	17	15	13	12	10	8
`Ш	105	19	18	17	16	14	12	10	8	6
Ž	110	17	16	15	13	12	10	8	6	4
TEMP	115	15	14	13	12	10	8	6	4	

SURCHAUFFE REQUISE TEMPÉRATURE HUMIDE

	50	52	54	56	58	60	62	64	66	68	70	72	74	76
55	9	12	14	17	20	23	26	29	32	35	37	40	42	45
60	7	10	12	15	18	21	24	27	30	33	35	38	40	43
65		6	10	13	16	19	21	24	27	30	33	36	38	41
70			7	10	13	16	19	21	24	27	30	33	36	39
75				6	9	12	15	19	21	24	28	31	34	37
80					5	8	12	15	18	21	25	28	31	35
85							8	12	15	19	22	26	30	33
90							5	8	13	16	20	24	27	31
95								5	10	14	18	22	25	29
100									8	12	15	20	23	27
105									5	9	13	17	22	26
110										6	11	15	20	25
115											8	14	18	23

La mesure de température humide interne doit être prise aussi près de l'entrée de bobine d'évaporateur que possible. Le relevé de température sèche extérieure doit être pris aussi près de l'entrée d'air de condenseur que possible.

TEMPÉRATURE SÈCHE

PIÈCES ET ACCESSOIRES

- 1. Bypass électronique WK-6889 : 1 kit
- 2. Tuyaux de charge rouge, jaune, bleu : 1 pièce de chaque
- 3. Capteurs de température thermiques à pinces : 2 pièces
- 4. Piles alcalines AA 1,5V: 4 pièces
- 5. Manuel d'instruction
- 6. Sac de transport : 1 pièce